Regulation Aspect


During safety verification process, the agency will use a stricter standard — ?0%(IEC60950 uses +6%, -10%) of the input voltage range labeled on the power supply to conduct the test. So, operating at the wider input voltage range as specified on the spec. sheet should be fine. The narrower range of input voltage labeled on the power supply is to fulfill the test standard of safety regulation and make sure that users insert input voltage correctly.
We cannot guarantee 100% that the final system can still meet the EMC requirements. The location, wiring and grounding of the switching power supply in the system may influence its EMC characteristics. In different environment or applications, the same switching power supply may have different outcomes. Our test results are based on setup shown in the EMC report.
According to safety standard, the leakage current in EN60950-1 Class I cannot exceed 3.5mA; in EN60601-1 cannot exceed 0.3mA. Others criteria like safe distance and numbers of fuse are also different. Please consult the diagram below:
Class I: Equipment where protection against electric shock is achieved by using basic insulation and also providing a means of connecting to the protective earth conductor in the building where by routing those conductive parts that are otherwise capable of assuming hazardous voltages to earth ground if the basic insulation fails. This means a class I SPS will provide a terminal/pin for earth ground connection.
Class II: Equipment in which protection against electric shock does not rely on basic insulation only, but in which additional safety precautions, such as double insulation or reinforced insulation are provided, there being no reliance on either protective earth or installation conditions. This means a class II SPS does NOT have a terminal/pin for earth ground connection.
LPS: When an electronic circuit is powered by a limit power source, its output current and power are under the limitation shown in Table 3.4, and the risk of fire can be reduced significantly. So, the safety distances and flammability rating of components can be much lower. In this way, the design cost for SPS compliant with LPS can be reduced as compared with non LPS SPS.
This regulation applies to the secondary circuitry. The circuit should be designed to guarantee that under normal operating conditions, the voltage between any two touchable points should be less than 42.4Vpeak or 60Vdc. For class I equipment, it refers to “between any touchable point and the ground.” Under single fault conditions, the voltages between any two conductors of the SELV circuit and between any one such conductor and earth shall not exceed 42.4V peak or 60Vdc for a period longer than 0.2 seconds. Moreover, a limit of 71V peak or 120Vdc shall not be exceeded. According to requirements below, MW SPSs can comply with SELV. IEC 60950-1 (ITE SPS): voltage of o/p circuit is less than 60Vdc under normal condition. IEC 61347-2-13 (LED SPS): voltage of o/p circuit is less than 120Vdc under normal condition.